Finite-Time Singularity Signature of Hyperinflation
نویسنده
چکیده
We present a novel analysis extending the recent work of Mizuno et al. [7] on the hyperinflations of Germany (1920/1/1-1923/11/1), Hungary (1945/4/30-1946/7/15), Brazil (1969-1994), Israel (1969-1985), Nicaragua (1969-1991), Peru (1969-1990) and Bolivia (1969-1985). On the basis of a generalization of Cagan’s model of inflation based on the mechanism of “inflationary expectation” or positive feedbacks between realized growth rate and people’s expected growth rate, we find that hyperinflations can be characterized by a power law singularity culminating at a critical time tc. Mizuno et al. [7] ’s double-exponential function can be seen as a discrete time-step approximation of our more general nonlinear ODE formulation of the price dynamics which exhibits a finite-time singular behavior. This extension of Cagan’s model, which makes natural the appearance of a critical time tc, has the advantage of providing a well-defined end of the clearly unsustainable hyperinflation regime. We find an excellent and reliable agreement between theory and data for Germany, Hungary, Peru and Bolivia. For Brazil, Israel and Nicaragua, the super-exponential growth seems to be already contaminated significantly by the existence of a cross-over to a stationary regime.
منابع مشابه
Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملSolution of Harmonic Problems with Weak Singularities Using Equilibrated Basis Functions in Finite Element Method
In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the compliment...
متن کاملAn ECC-Based Mutual Authentication Scheme with One Time Signature (OTS) in Advanced Metering Infrastructure
Advanced metering infrastructure (AMI) is a key part of the smart grid; thus, one of the most important concerns is to offer a secure mutual authentication. This study focuses on communication between a smart meter and a server on the utility side. Hence, a mutual authentication mechanism in AMI is presented based on the elliptic curve cryptography (ECC) and one time signature (OTS) consists o...
متن کاملFinite-time singularity formation at a magnetic neutral line in Hall magnetohydrodynamics
The formation of a current sheet in a weakly collisional plasma can be modelled as a finite-time singularity solution of magnetohydrodynamic equations. We use an exact self-similar solution to confirm and generalise a previous finding that, in sharp contrast to two-dimensional solutions in standard MHD, a finite-time collapse to a current sheet can occur in Hall MHD. We derive a criterion for t...
متن کاملThe stability of the solution of an inverse spectral problem with a singularity
This paper deals with the singular Sturm-Liouville expressions $ ell y = -y''+q(x)y=lambda y $ on a finite interval, where the potential function $q$ is real and has a singularity inside the interval. Using the asymptotic estimates of a spectral fundamental system of solutions of Sturm-Liouville equation, the asymptotic form of the solution of the equation (0.1) and the ...
متن کامل